国产精品一区不卡,久久东京热人妻无码人AV,91久久人澡人人添人人爽爱播网,亚洲综合一区国产精品

銷售咨詢熱線:
19357158997

產(chǎn)品分類

Product Category
技術(shù)文章
首頁(yè) > 技術(shù)中心 > 納米壓痕儀測(cè)量生物復(fù)合材料剛度

納米壓痕儀測(cè)量生物復(fù)合材料剛度

 更新時(shí)間:2023-05-08 點(diǎn)擊量:791

, 題目:

仿生SIS基生物復(fù)合材料,具有更好的生物降解性、抗菌活性和血管生成,用于腹壁修復(fù)

描述

小腸黏膜下層(SIS)是一種被廣泛關(guān)注的用于重建組織缺損的無(wú)細(xì)胞材料,但在腹壁修復(fù)過(guò)程中,由于降解快導(dǎo)致長(zhǎng)期力學(xué)性能差、細(xì)菌污染引起的感染以及術(shù)后新生血管不足而受到限制。

1. 簡(jiǎn)介

修復(fù)創(chuàng)傷引起的腹壁缺損、廣泛手術(shù)切除或疝氣仍然是一個(gè)挑戰(zhàn)[1]。目前,合成或生物材料已被用作恢復(fù)腹壁完整性的網(wǎng)狀物。合成材料,如聚丙烯,成為腹壁修復(fù)的標(biāo)準(zhǔn)護(hù)理[2]。然而,它們的植入物剛性和不可吸收性與慢性炎癥組織反應(yīng)和高并發(fā)癥有關(guān),包括感染、內(nèi)臟粘連、慢性疼痛、擠出和復(fù)發(fā)等[34]在這方面,由于具有出色的吸收性和生物相容性,生物材料顯示出優(yōu)于合成材料的優(yōu)勢(shì)[5].此外,生物材料已被證明在組織學(xué)和功能方面促進(jìn)組織的建設(shè)性重塑和再生。因此,生物材料在腹壁缺損的修復(fù)中越來(lái)越受到關(guān)注。

作為一種廣泛使用的生物材料,小腸黏膜下層(SIS)是一種天然存在的細(xì)胞外基質(zhì)(ECM),具有豐富的膠原蛋白,最終可以被新的位點(diǎn)特異性組織取代,稱為組織內(nèi)源性再生[67]。與交聯(lián)生物網(wǎng)或任何其他基于膠原蛋白的材料相比,SIS含有多種生長(zhǎng)因子,

2. 材料和方法

納米壓痕用于測(cè)量材料在生物力學(xué)環(huán)境下酶降解過(guò)程中的微觀剛度(微剛度)。根據(jù)先前報(bào)道的方法[[27],[28],[29]],通過(guò)使用PIUMA納米壓痕儀(Optics11,荷蘭阿姆斯特丹)和半徑為38.5μm的球形探針進(jìn)行納米壓痕測(cè)試。將樣品粘在培養(yǎng)皿的底部,然后在室溫下浸沒(méi)在PBS溶液中。在測(cè)試過(guò)程中,納米壓痕保持在溶液表面以下。
3. 結(jié)果

為了進(jìn)一步了解SIS和CS/ES-SIS復(fù)合材料在生物力學(xué)環(huán)境下的降解機(jī)制,我們研究了材料在降解過(guò)程中的微觀力學(xué)性能。納米壓痕測(cè)量適用于研究材料的微剛度。如表1所示,CS/ES-SIS復(fù)合材料的微剛度最初低于SIS,表明與CS/ES納米纖維結(jié)合的SIS可以降低其剛度。然而,在暴露于膠原酶后,CS / ES-SIS復(fù)合材料在隨后的所有暴露期后表現(xiàn)出比SIS更高的微觀剛度。降解7 d后,SIS的微剛度僅保持8.82 ±0.42 kPa,而CS/ES-SIS復(fù)合材料的微剛度可保持64.5 ±2.98 kPa。

表 1.生物力學(xué)環(huán)境下不同降解時(shí)間下SIS和CS/ES-SIS復(fù)合材料的微剛度.


638115315808276326711.jpg

Optics11成立于2011年,是阿姆斯特丹自由大學(xué)(VU)的衍生組織。從那時(shí)起,這家初創(chuàng)公司的收入和員工持續(xù)增長(zhǎng),成為荷蘭發(fā)展最快的公司之一,并具有國(guó)際影響力。Optics11 Life提供功能強(qiáng)大的新型納米壓痕儀,與傳統(tǒng)的同類產(chǎn)品相比,使用方便、功能多樣、堅(jiān)固耐用。主要用于測(cè)量復(fù)雜、不規(guī)則的生物材料,如單細(xì)胞、組織、水凝膠和涂層的機(jī)械性能。

Piuma Nanoindenter

生物組織、軟物質(zhì)材料力學(xué)性能測(cè)試的新方法

638115304139229018177.jpg

Piuma是功能強(qiáng)大的臺(tái)式儀器,可探索水凝膠、生理組織和生物工程材料的微觀機(jī)械特性。表征尺度從宏觀直至細(xì)胞。專為分析測(cè)試軟材料而設(shè)計(jì),測(cè)量復(fù)雜和不規(guī)則材料在生理?xiàng)l件下的力學(xué)性能。杭州軒轅科技有限公司

主要優(yōu)勢(shì)

● 內(nèi)置攝像鏡頭,方便實(shí)時(shí)觀察樣品臺(tái)

● 實(shí)時(shí)分析計(jì)算測(cè)量結(jié)果,原始數(shù)據(jù)并將以文本文件存儲(chǔ),方便任何時(shí)候?qū)隓ataviewer軟件進(jìn)行復(fù)雜處理

● 探針經(jīng)過(guò)預(yù)先校準(zhǔn),即插即用。對(duì)于時(shí)間敏感的樣品確保了快速測(cè)量

● 光纖干涉MEMS技術(shù)能夠以無(wú)損的方式測(cè)量即使是最軟的材料,并保證分辨率。同時(shí)探針可以重復(fù)使用Piuma軒轅納米壓痕儀Piuma軒轅納米壓痕儀

                                           

技術(shù)參數(shù)

+
模量測(cè)試范圍

5 Pa - 1 GPa

探頭懸臂剛度0.025 - 200 N/m
探頭尺寸(半徑)

3 - 250 μm

最大壓痕深度100 μm
傳感器最大容量200
測(cè)試環(huán)境air, liquid (buffer/medium)
粗調(diào)行程

X*Y:12×12 mm          Z:12 mm

加載模式

Displacement / Load* / Indentation*
測(cè)試類型

準(zhǔn)靜態(tài)(單點(diǎn),矩陣)

蠕變,應(yīng)力松弛

DMA動(dòng)態(tài)掃描 (E', E'', tanδ)

動(dòng)態(tài)掃描頻率*
0.1 - 10 Hz
內(nèi)置擬合模型Young's Modulus (Hertz / Oliver-Pharr / JKR)
*為可選升級(jí)配置








Fiber-On-Top 探頭

新型光纖干涉式懸臂梁探頭,利用干涉儀來(lái)監(jiān)測(cè)懸臂梁形變。638115393727713280157.jpg


相較于原子力顯微鏡或傳統(tǒng)納米壓痕儀

創(chuàng)新型光纖探頭,彌補(bǔ)了傳統(tǒng)納米壓痕儀無(wú)法測(cè)試軟物質(zhì)的問(wèn)題,也解決了AFM在力學(xué)測(cè)試中的波動(dòng)大,操作困難、制樣嚴(yán)苛等常見(jiàn)缺陷。


● 背景噪音低:激光干涉儀抗干擾強(qiáng)于AFM反射光路

● 制樣更簡(jiǎn)單:對(duì)樣品的粗糙度寬容度高于AFM

● 剛度選擇更準(zhǔn)確:平行懸臂梁結(jié)構(gòu)有利于準(zhǔn)確判別壓痕深度與壓電陶瓷位移比例關(guān)系,便于選擇合適剛度探頭來(lái)保證彈性形變關(guān)系的穩(wěn)定性,進(jìn)而獲得重復(fù)率更高、準(zhǔn)確性更好的數(shù)據(jù)



內(nèi)置分析軟件

638004237288879575913.jpg

● 借助功能強(qiáng)大而易于操作的軟件,用戶可以自由控制壓痕程序(載荷、位移等)。自動(dòng)處理曲線的流程,可以獲得數(shù)據(jù)和結(jié)果的快速分析


● 原始參數(shù)完整txt導(dǎo)出,便于后續(xù)復(fù)雜處理的需要


● 利用Hertz接觸模型從加載部分計(jì)算彈性模量,與常用的Oliver&Pharr方法相比,更為適合生物組織和軟物質(zhì)材料特性



視頻介紹


近期文獻(xiàn)



年  份期  刊題  目
2022Advanced Functional MaterialsEngineering Vascular Self-Assembly by Controlled 3D-Printed Cell Placement
2022BiomaterialsHydrogels derived from decellularized liver tissue support the growth and differentiation of cholangiocyte organoids
2021Biofabrication3D bioprinting of tissue units with mesenchymal stem cells, retaining their proliferative and differentiating potential, in polyphosphate-containing bio-ink
2021nature communicationsJanus 3D printed dynamic scaffolds for nanovibration-driven bone regeneration
2020Environmental Science & TechnologyEffect of Nonphosphorus Corrosion Inhibitors on Biofilm Pore Structure and Mechanical Properties
2020Acta BiomaterialiaA multilayer micromechanical elastic modulus measuring method in ex vivo human aneurysmal abdominal aortas